
Structural alignment of plain text books

André Santos, José João Almeida, Nuno Carvalho

Departamento de Informática, Universidade do Minho
Campus de Gualtar, 4710-057 Braga, PORTUGAL

andrefs@cpan.org, jj@di.uminho.pt, narcarvalho@di.uminho.pt

Abstract
Text alignment is one of the main processes for obtaining parallel corpora. When aligning two versions of a book, results are often affected
by unpaired sections – sections which only exist in one of the versions of the book. We developed Text::Perfide::BookSync,
a Perl module which performs books synchronization (structural alignment based on section delimitation), provided they have been
previously annotated by Text::Perfide::BookCleaner. We discuss the need for such a tool and several implementation
decisions. The main functions are described, and examples of input and output are presented. Text::Perfide::PartialAlign
is an extension of the partialAlign.py tool bundled with hunalign which proposes an alternative methods for splitting bitexts.

Keywords: text alignment, book synchronization, partial alignment

1. Introduction
A common problem which one deals with when aligning
literary works is the existence of unmatched sections: entire
sections which exist in one version of the book and do not
have a match in another version.
Missing sections is a more common problem with books
than with other types of documents, because books
are more likely to include sections which are version-
dependent (prefaces to a given edition, translator notes, au-
thor’s biographies and so on). This may however still hap-
pen with other kinds of documents – for example, because
one of the documents was somehow truncated, or it was
only possible to obtain a partial version of it.
The existence of unpaired sections decreases aligners ac-
curacy, which are usually very sensitive to deletions and
insertions, and are not capable of dealing with such large
differences in the texts. The product of such alignments is
often too bad to be included in a parallel corpus. Manually
correcting the alignment is not a feasible solution when one
is dealing with large amounts of documents, and simply re-
moving by hand the badly aligned parts also presents the
same problem.
A tool capable of establish a mapping between the sections
of two books and detecting the unpaired sections would al-
low to identify the problem and act accordingly.

1.1. Project goals
The work presented in this paper has been developed within
Project Per-Fide, a project which aims to build a large
parallel corpora (Araújo et al., 2010). This process in-
volves gathering, preparing, aligning and making available
for query thousands of documents of diferent types (books,
news, legislation, technical manuals, . . . ) in several lan-
guages.
Text::Perfide::BookSync (Santos, 2011) is a Perl
module developed to address problems caused by unpaired
sections in book alignment. This module implements func-
tions to detect missing sections in books and align them
at section-level – we denominated this structural alignment
process as book synchronization. This module includes

a script, syncbooks, which implements the complete
workflow.

2. Book synchronization
2.1. Delimiting sections

Before being ready for synchronization, the sections of
each book must be determined: how many there are, where
each one starts and ends, and their type.
Text::Perfide::BookCleaner (Santos, 2011; San-
tos and Almeida, 2011) is a Perl module which cleans and
normalizes plain text books: removes page structure, nor-
malizes paragraph and sentence notation, and finds and an-
notates section delimiters.
syncbooks expects books to be previously annotated by
Text::Perfide::BookCleaner, and relies on the
section annotations to perform book synchronization.

2.2. Extracting section information

Book synchronization is a process which takes as input two
versions of a given document and builds a mapping be-
tween the sections of both versions.
After finding and annotating the section delimiters, the next
step is to compile a list containing the relevant information
about the existing sections in each version of the document.
For each section, the following elements are stored:

• section type (if any)

• section number (if any)

• first and last character offset

• total number of words

• first words within the section

The section alignment is then performed based on this data
structure.

2069



1 EVIL UNDER THE SUN
2

3 Agatha Christie
4 (...)
5

6 _sec+N:cap=1_ Chapter 1
7

8 When Captain Roger Angmering built himself
9 a house in the year 1782 on the island off

10 (...)
11

12 _sec+N:cap=2_ Chapter 2
13

14 When Rosamund Darnley came and sat down by
15 him, Hercule Poirot made no attempt to dis-
16 (...)

1 [{
2 ’title’ => ’begin’,
3 ’id’ => ’begin’,
4 ’wc’ => ’9’,
5 ’end’ => ’105’,
6 ’start’ => 0
7 },{
8 ’title’ => ’_sec+N:cap=1_ Chapter 1’,
9 ’id’ => ’cap=1_’,

10 ’wc’ => ’4358’,
11 ’end’ => ’24378’,
12 ’start’ => ’106’
13 },{
14 ’title’ => ’_sec+N:cap=2_ Chapter 2’,
15 ’id’ => ’cap=2_’,
16 ’wc’ => ’3895’,
17 ’end’ => ’46103’,
18 ’start’ => ’24379’
19 },(...)
20 ]

Example 1: Excerpt of original text annotated by
Text::Perfide::BookCleaner (top) and respective structure
with section information (bottom).

2.3. Alignment method

The section alignment is performed as follows: each sec-
tion mark in each book is transformed into a token contain-
ing that section’s number and type (for example, a mark
inserted by bookcleaner as _sec+R: cap=1_ will
originate the token cap=1). The tokens from each book
are printed to a file, and the Unix diff command is used to
compare them.

The diff utility (Hunt et al., 1976) uses the Hunt-McIlroy
algorithm to solve the longest common subsequence prob-
lem (Hirschberg, 1975), being capable of comparing two
files and discovering the lines that were added or removed
between them. By comparing the files which contain the
section tokens, we can detect which sections can only be
found in one of the original documents. Example 2 illus-
trates a diff file generated from comparing two section files.

Occasionally, two versions of a book have different types
for the same sections. For example, one version may be
divided in tomes, and the other may call it volumes; one
version may have chapters while the other has typeless sec-
tions (e.g. sections which are represented only by roman
numbers).

In these cases, we have made it possible to perform the
section-level alignment based solely on the section num-
bers, regardless of their type. This way, having different
types for matching sections does not prevent two books
from being effectively synchronized.

1 _sec+N:cap=1_ Capítulo I
2 _sec+N:cap=2_ Capítulo II
3 _sec+N:cap=3_ Capítulo III
4 _sec+N:cap=4_ Capítulo IV
5 _sec+N:cap=5_ Capítulo V
6 _sec+N:cap=6_ Capítulo VI
7 _sec+N:cap=7_ Capítulo VII
8 _sec+N:cap=8_ Capítulo VIII

1 _sec+O:cap=1_ Capítulo Primero
2 _sec+N:cap=3_ Capítulo III
3 _sec+NA:Fin_
4 _sec+N:cap=4_ Capítulo IV
5 _sec+N:cap=5_ Capítulo V
6 _sec+N:cap=7_ Capítulo VII
7 _sec+N:cap=8_ Capítulo VIII

1 begin begin
2 cap=1_ cap=1_
3 cap=2_ <
4 cap=3_ cap=3_
5 > Fin_
6 cap=4_ cap=4_
7 cap=5_ cap=5_
8 cap=6_ <
9 cap=7_ cap=7_

10 cap=8_ cap=8_

Example 2: Excerpt of two book’s section list (top and mid-
dle) and the resulting diff file (bottom).

2.4. Ghost sections and chunks
By analyzing the output we can assess which sections are
only found in one of the versions. However, the fact that a
given section was not detected by bookcleaner does not
always necessarily mean that the section is actually missing
– it just means that its beginning could not be found. This
happens either because the section is in fact not there or
because bookcleaner was not capable of identifying it.
Ghost sections give origin to a problem: what should be
done with them?

• They cannot be synchronized because, for all practical
purposes, they are invisible.

• They cannot be removed along with their matching
section either, for the very same reason.

• Removing just the matching section (besides being
pointless) would leave us with an even bigger prob-
lem: unpaired ghost sections.

In order to solve this problem, we came up with the con-
cept of chunks. A chunk is a data structure which includes
a pair of matching sections, and all the following unpaired
sections from both documents until the next pair of match-
ing sections, which is the beginning of another chunk.
The interest of chunks relies on how the number of chunks
and which sections belong to which chunk are determined.
Each chunk starts with a pair of matching sections, and
includes every following unpaired sections in both ver-
sions. Once the next pair of matching sections is reached, a
new chunk is created, and the same procedure is followed.
A formal definition of this method is presented in Algo-
rithm 1, and an example of the chunks generated from a
diff file can be found in Example 3.
This means that every matched pair of sections will be at the
beginning of a chunk, and every unpaired section will be in

2070



Input: pairs_list: list of matching sections, secsL1: list of
sections from textL1, secsL2: list of sections from
textL2

Output: chunks: list of chunks

c = new Chunk
chunks.add(c)
while secsL1 6= ∅ ∧ secsL2 6= ∅ do

while sL1 = secsL1.next ∧ sL1 /∈ pairs_list do
c.add(sL1)

end
while sL2 = secsL2.next ∧ sL2 /∈ pairs_list do

c.add(sL2)
end
c = new Chunk
chunks.add(c)
c.add(sL1)
c.add(sL2)

end
Algorithm 1: Chunks calculation.

a chunk with a matching section at the top. In a perfectly
synchronized pair of books (a pair where every section has
one and only one match), each section will be placed on a
chunk of its own.
As soon as all chunks have been determined, the number of
words in each chunk is calculated for further comparisons.

3. Output objects
After all the chunks have been calculated, as well as their
size (in number of words), three different output objects can
be built: a synchronization matrix, a pair of annotated files,
or a pair of sets of split files.

3.1. Synchronization matrix
The synchronization matrix consists of an HTML file, built
using the Perl module HTML::Auto (Carvalho, 2011).
This matrix contains a visual representation of the synchro-
nization, providing the user with an intuitive global vision
on the synchronization results.
An example of a synchronization matrix is presented on
Figure 1. The lines of the matrix correspond to the sections
of one of the files, and the columns to the sections of the
other. The numbers in the matrix indicate the chunk those
sections belong to. The colors – green, yellow and red –
represent how likely it is that the sections in a given chunk
really match. This is calculated using the formula

L =
wc_left
wc_right

(1)

where wc_left and wc_right represent, respectively, the to-
tal number of words in the left and right sections of the
chunk. If L is between 0.9 and 1.1, the color green is used;
if L is between 0.5 and 0.9 or 1.1 and 1.5, yellow; other-
wise, red.
Hovering with the mouse over a given square opens a pop-
up containing the first words of each sections. This allows
the user to confirm if those two sections have been correctly
aligned or not.
In Figure 1, it is possible to observe that Chapter 2 was not
found in the version on the horizontal, which originated a

1 begin begin

2

cap=1_
cap=1_
cap=2_ <

3 cap=3_ cap=3_
4 > Fin_
5 cap=4_ cap=4_

6

cap=5_
cap=5_
cap=6_ <

7 cap=7_ cap=7_
8 cap=8_ cap=8_

1 (...)

2

{
’left’ => {
’secs’ => [1,

2],
’wc’ => 29837,

’end’ =>
’177232’,

’start’ =>
’352’
},
’right’ => {
’secs’ => [1],
’wc’ => 29004,
’end’ =>

’170262’,
’start’ =>

’842’
}

},
3 (...)

1 (...)

2

(...),
{
’left’ => {
’secs’ =>

[5,6],
’wc’ => 34594,
’end’ =>

’549783’,
’start’ =>

’345030’
},
’right’ => {
’secs’ => [5],
’wc’ => 25990,
’end’ =>

’475746’,
’start’ =>

’323935’
}

},
3 (...)

Example 3: Diff file (top) and structure with detailed chunk
information (middle and bottom). Two chunks have been
highlighted in orange and blue.

chunk starting in Chapter 1 and ending before Chapter 3.
Also, an incorrect identification of the end of the book was
put in chunk 2 together with Chapter 3.

3.2. Annotated files

Another possible output object consists in a pair of files
which are copies of the original input files annotated
with synchronization marks. For example, for a given
pair of files fileLeft.txt and fileRight.txt,
a pair of marked files fileLeft.txt.sync and
fileRight.txt.sync will be created.
The marks are placed in the beginning of each chunk, and
they follow the form <sync id="i">, where i is the
number of the chunk. Later on, when the books are being
aligned, these marks can be used as anchor points.
Frequently, the unpaired sections are found in the begin-
ning of the document: introductions, prefaces, indexes and

2071



Figure 1: Synchronization matrix produced as a result of synchronizing the previous examples.

other introductory segments. As such, an option was added
which allows to skip the first n chunks, resulting in output
files which only start at chunk n+1.

3.3. Split files
Some aligners are not capable of handling large files. This
is the case, for example, of WinAlign, from SDL Tra-
dos (Trados, 2000). hunalign (Varga et al., 2005a) also
has size limits, which it overcomes by splitting the files in
smaller portions. However, the files have to be split in sim-
ilar ways (i.e. making sure that each pair of smaller files
contains the same sections).
As such, syncbooks is capable of splitting the original
files in smaller files, each containing one chunk. This way,
the original files fileLeft.txt and fileRight.txt
are split into several fileLeft.ci and fileRight.ci,
where i is the number of the chunk contained in the file.

4. Evaluation
The main goal of Text::Perfide::BookSync is to
improve the results of the alignment of literary works. As
such, its evaluation can be performed by comparing the re-
sults of the alignment of a set of books with and without
using Text::Perfide::BookSync.
A set of 40 pairs of books was created (20 books in Spanish
and their translation to Portuguese), comprising books from
South American authors such as Isabel Allende and Luis
Sepúlveda. Three copies of this set were made: pairs in S1
was aligned normally; pairs in S2 were aligned after being
cleaned with Text::Perfide::BookCleaner and
pairs in S3 were aligned after being cleaned and synchro-
nized with Text::Perfide::BookSync. Given that
synchronization requires previousy processing the books
with Text::Perfide::BookCleaner, S2 was in-

cluded only to allow to distinguish between the improve-
ments caused by the cleaning and the synchronization steps.
The results of the alignments were finally compared. A rep-
resentation of the evaluation process can be found in Fig-
ure 2.

Figure 2: Text::Perfide::BookSync evaluation
process.

Table 1 details the total number of books aligned in each
set, the number of those alignments which were considered
normal and bad by the aligner1, the number of alignments
which produced no results (which generally happens when
something in the text caused the aligner to quit unexpec-
tadly), and the percentage of bad alignments in the total
number of alignments.

1The aligner used in Project Per-Fide,cwb-align (IMS Cor-
pus Workbench, 1994 2002), marks as bad any alignment with a
high rate of non-1:1 alignments.

2072



Table 1: Number of pairs aligned and results.

S1 S2 S3 ∆%S1,S3

Total aligned 38 40 40 +5.0%
Classified as bad 9 8 3 -66.7%
Percentage bad 23 20 7.5
Missing 2 0 0 -100%

The results obtained show that the synchronization pro-
cess improved significantly the accuracy of the alignments:
from 23% of bad alignments obtained in S1 to 7.5% ob-
tained in S3. It is also possible to conclude that, in this par-
ticular case, just cleaning the texts had little effect on the
alignments, having only reduced the number of bad align-
ments from 9 in S1 to 8 in S2.

5. Partial alignment
As previously mentioned, hunalign, in order to be
able to align large files, uses an auxiliary Python script,
partialAlign.py (Varga et al., 2005b), which splits
large bitexts in pairs of smaller files, that can then be passed
to hunalign.
partialAlign.py starts be detecting unique words –
the words that occur exactly twice in the bitext, once in
each version of the text. Then a dynamic programming al-
gorithm is used to find the longest possible chain of such
correspondences, without intersections. A formal defini-
tion of this algorithm can be found in Algorithm 2.

Input: textL1: text in language L1, textL2: text in language
L2

Output: small_docs: smaller files containing parts of the
input pair.

bow = bag_of_words(textL1, textL2)
forall the word ∈ bow do

if occurs(word, textL1) = 1
∧ occurs(word, textL2) = 1 then
unique_words.add(word)

end
chain = extract_longest_chain(unique_words)
smaller_documents =
split(textL1, textL2, unique_words)

Algorithm 2: partialAlign.py

This simple approach not only works very well in the
task of splitting bitexts; it can also be improved and
used in other related tasks, such as evaluating the re-
sults of book synchronization. As such, we developed the
Text::Perfide::PartialAlign module, which
includes the pf-partialalign script. This script origi-
nally started as a Perl port of partialAlign.py, but has
been extended with some features which allow it to be used
for purposes other than strictly easing the task of aligners.

5.1. Unambiguous-concept translation sets
partialAlign.py relies on unique words – words
which occur only once in each version of a bitext. These
words provide evidence that the sentences where they ap-
pear directly match each other, which is used to find split-
ting points across the texts.

Despite this being a good strategy when bitext languages
share the same alphabet and character set, bitexts written
in languages as different as Portuguese and Russian often
need a more sophisticated approach.
Some words/terms have a small amount of ambiguity, and
are expected to be translated always the same way. For
example:

• proper names (eg. Londonen= Londrespt)

• technical terminology (eg. fileen= ficheiroen)

• months (Decemberen= Dezembropt)

Sometimes there is more than one word/term representing
these concepts, either by morphological agreement con-
straints or simple synonymy. For example:

• (Russian) proper noun declination
{Israel}pt= {Израиль, Израилем, Израиля,
Израилю}ru

• {wolphram, tungsten}en= {volfrâmio, tungsténio}pt

We denominated these equivalent sets of words as
unambiguous-concept translation sets (UCTSs). An
UCTS for two languages L1 and L2 is defined by a set of
equivalent terms in L1, and a set of equivalent terms in L2.
As follows:

{term∗}L1 = {term∗}L2

pf-partialalign can receive a list of UCTS, which
are used in addition to the similar-words method, meaning
that even translated terms may be used to split the bitext.
The algorithm used by partialAlign.py, previously
described in Algorithm 2, was improved, and the UCTS are
used to identify unique pairs of words instead of unique
words – a formal definition can be found in Algorithm 3.
Given a pair of words w1 and w2, a bitext BT written in two
languages L1 and L2, and an UCTS U , w1 and w2 form a
unique pair if:

• w1 belongs to UL1 and w2 belongs to UL2

• The sum of occurrences of w1 in UL1 and its equiva-
lent terms in TL1 is equal to one.

• The sum of occurrences of w2 in UL2 and its equiva-
lent terms in TL2 is equal to one.

5.2. Text segmentation
The original partialAlign assumes that the input doc-
uments have one sentence per line, and as a result it
performs segmentation at sentence level. This means
that sentences are respected when the files are split.
pf-partialalign assumes the same behavior by de-
fault, but it also allows to define a different segmenta-
tion pattern – if the segmentation pattern is, for example,
_sec, it will be able to split books (preprocessed with
bookcleaner) into sections. This may be used as an
alternative to syncbooks – while the latter synchronizes
sections based on their type and numbering, the former syn-
chronizes based on the words that sections contain.

2073



Input: textL1: text in language L1, textL2: text in language
L2

Output: small_docs: smaller files containing parts of the
input pair.

bow = bag_of_words(textL1, textL2)
forall the word ∈ bow do

ucts = list_ucts.search(word)

if ∃! w1 ∈ uctsL1 : occurs(w1, textL1) = 1 then
if ∃! w2 ∈ uctsL2 : occurs(w2, textL2) = 1 then

unique_pairs.add(w1, w2)
end

end
end
chain = extract_longest_chain(unique_pairs)
small_docs = split(textL1, textL2, unique_pairs)

Algorithm 3: Text::Perfide::PartialAlign

6. Conclusions and future work
The evaluation tests point out that
Text::Perfide::BookSync is able to improve
substantially the results of book alignment.
This tool, initially developed as an integrated component
of a larger corpora preparation system for Project Per-Fide,
has proved to be useful in other contexts, such as ebook
creation.
Output objects such as the synchronization matrix allow to
quickly and intuitively inspect how compatible two books
are, and where are the main problems located.
Text::Perfide::PartialAlign is still being de-
veloped and improved, but early tests have demonstrated
that the methods for finding UCTSs in bitexts can be used
in several text-alignment-related tasks.
Both modules already available under a free software li-
cense on CPAN2.

7. Acknowledgements
André Santos has a scholarship from Fundação para a
Computação Científica Nacional and the work reported
here has been partially funded by Fundação para a Ciên-
cia e Tecnologia through project Per-Fide PTDC/CLE-
LLI/108948/2008.
We would like to thank the authors of
partialAlign.py for releasing it under a free
software license, and particularly to Dániel Varga for
helping us understanding how it works.

8. References
S. Araújo, J.J. Almeida, I. Dias, and A. Simões. 2010.

Apresentação do projecto Per-Fide: Paralelizando o Por-
tuguês com seis outras línguas. Linguamática, page 71.

Nuno Carvalho. 2011. HTML::Auto Perl
module. Retrieved October 24, 2011 from
http://search.cpan.org/ smash/HTML-Auto-0.01/.

D.S. Hirschberg. 1975. A linear space algorithm for com-
puting maximal common subsequences. Communica-
tions of the ACM, 18(6):341–343.

2www.cpan.org

J.W. Hunt, M.D. McIlroy, and Bell Telephone Laboratories.
1976. An algorithm for differential file comparison. Bell
Laboratories.

IMS Corpus Workbench. 1994-2002. http://www.ims.uni-
stuttgart.de/projekte/CorpusWorkbench/.

A. Santos and J.J. Almeida. 2011.
Text::Perfide::BookCleaner, a Perl module to clean
plain text books.

A.F. Santos. 2011. Contributions for building a Corpora-
Flow system. Master’s thesis, Escola de Engenharia,
Universidade do Minho.

Trados. 2000. WinAlign. TRADOS GmbH.
D. Varga, P. Halácsy, A. Kornai, V. Nagy, L. Németh, and

V. Trón. 2005a. Parallel corpora for medium density lan-
guages. Recent Advances in Natural Language Process-
ing IV: Selected Papers from RANLP 2005.

D. Varga, P. Halácsy, A. Kornai, V. Nagy, L. Németh,
and V. Trón. 2005b. partialAlign – hunalign’s auxil-
iary tool. Retrieved October 24, 2011 from http://
mokk.bme.hu/resources/hunalign/.

2074


