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Abstract
Text alignment is one of the main processes for obtaining parallel corpora. When

aligning two versions of a book, results are often affected by unpaired sections – sec-
tions which only exist (or could only be found) in one of the versions of the book.
We developed Text::Perfide::BookSync, a Perl library which performs book syn-
chronization (structural alignment based on section delimitation).
Text::Perfide::PartialAlign is an extension of the partialAlign.py tool bundled

with hunalign which proposes an alternative methods for splitting bitexts.

1 Book synchronization

A common problem which one deals with when aligning literary works is the existence
of unmatched sections : entire sections which exist in one version of the book and do not
have a match in another version.

Text::Perfide::BookSync uses section headings to synchronize books – align them

at section level, helping in the creation of anchor points which can be used to guide the

aligner.

1.1 Extracting section information

Section
boundaries:

Another Perl library, Text::Perfide::BookCleaner, is used to anno-
tate section headings. These annotations are later used to determine
section boundaries.

Short ID: The section type and number are used to create a short ID which will
later be used to compare sections.

Title and initial
words:

These are extracted to provide users with intuitive ways of understanding
the results of the synchronization.

Section size: The number of words of two sections can be used to assess their compat-
ibility in terms of size.

1.2 Synchronization method

The section alignment is performed as follows:

1. A short ID is generated for each section, containing its type and number (if any).

2. Short IDs from all the sections in each book are printed to a file.

3. Files are compared using Unix’s diff command.

4. diff ’s output shows which sections can be paired and which ones are unpaired.

1.3 Ghost sections and chunks
• Often, sections not found in one

version are not actually missing –
they were simply not identified.

• These sections cannot be synchro-
nized because they are invisible to
the synchronizer.

• Solution is to create chunks: a
chunk is a data structure which
includes a pair of matching sec-
tions, and all the following un-
paired sections from both docu-
ments until the next pair of match-
ing sections

• Every matched pair of sections will
be at the beginning of a chunk,
and every unpaired section will be
in a chunk with a matching section
at the top.

• Synchronization is then the align-
ment of chunks based on their first
section.

Function ChunksCalc(pairs, secsL1, secsL2) : chunk∗

Input: pairs: list of matching sections,
secsL1: list of sections from textL1,
secsL2: list of sections from textL2

Output: chunks: list of (section∗, section∗)

begin
c← new Chunk
push(chunks, c)
while secsL1 6= ∅ ∧ secsL2 6= ∅ do

sL1 ← next(secsL1)

while sL1 /∈ pairs do
push(cL1,sL1)

sL1 ← next(secsL1)

sL2 ← next(secsL2)

while sL2 /∈ pairs do
push(cL2,sL2)

sL2 ← next(secsL2)

push(chunks, c)

2 Output objects
2.1 Annotated files

alice EN
<sync id="0">

ALICE’S ADVENTURES IN

WONDERLAND

Lewis Carroll (...)

<sync id="1">

CHAPTER I. Down the

Rabbit-Hole

(...)

<sync id="2">

CHAPTER II. The Pool

of Tears

(...)

alice ES
<sync id="0">

Las Aventuras de Alicia

en el Paı́s de las Mara-

villas, por Lewis Carrol

(...)

<sync id="1">

Capı́tulo 1 - EN LA MADRI-

GUERA DEL CONEJO (...)

<sync id="2">

Capı́tulo 2 - EL CHARCO

DE LAGRIMAS

(...)

2.2 Split files
alice_EN.txt

alice_ES.txt

⇓

alice_EN.txt.c000

alice_ES.txt.c000

alice_EN.txt.c001

alice_ES.txt.c001

alice_EN.txt.c002

alice_ES.txt.c002

(...)

2.3 Synchronization matrix

3 Evaluation

• set of 20 pairs of books
(Portuguese and Spanish versions)

• 3 copies of the set:
Set 1: aligned normally
Set 2: cleaned (with bookcleaner)

and aligned
Set 3: cleaned, synchronized (with

booksync) and aligned
• compare alignment results

Set 1 Set 2 Set 3 ∆%S1,S3

Total aligned 38 40 40 +5.0%

Classified as bad 9 8 3 -66.7%
Percentage bad 23 20 7.5

Not aligned 2 0 0 -100%

Classified as bad: The aligner classifies as
bad any alignment with more than 30%
non-1:1 correspondences.

Not aligned: This happens when the
aligner unexpectedly quits while
processing a bitext (for example,
because it ran out of memory).

4 Partial alignment
hunalign uses an auxiliary Python script, partialAlign.py, to split large bi-

texts in pairs of smaller files before alignment, using terms which occur only once

in each half of a bitext. Text::Perfide::PartialAlign is a Perl library

which implements the same approach and extends it to allow the use of UCTS.

Function T::P::PartialAlign(textL1, textL2, l ucts) : partial doc∗
Input: textL1: text in language L1, textL2: text in

language L2, l ucts: UCTS∗

Output: partial docs: smaller files containing parts
of the input pair.

UCTS: (word∗,word∗)
unique pairs: (word,word)∗

bow = bag of words(textL1, textL2)
forall the word ∈ dom(bow) do

ucts←search(l ucts, word)

if ∃! w1 ∈ uctsL1 : occurs(w1, textL1) = 1
then

if ∃! w2 ∈ uctsL2 : occurs(w2, textL2) = 1
then push(unique pairs, (w1, w2))

chain = extract longest chain(unique pairs)
partial docs = split(textL1, textL2, unique pairs)

UCTS: Unambiguous-
concept translation set.
Words/terms that have a
small amount of ambiguity,
and are expected to be
translated always the same
way.{

wolphram

tungsten

}
en

⇔
{

volfrâmio

tungsténio

}
pt

{
Israel

}
pt
⇔
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CPAN: Text::Perfide::BookSync, Text::Perfide::PartialAlign, HTML::Auto. Contact information: andrefs@cpan.org, jj@di.uminho.pt, narcarvalho@di.uminho.pt, http://natura.di.uminho.pt.


