
Structural alignment of plain text books
André Santos, José João Almeida, Nuno Carvalho

Abstract
Text alignment is one of the main processes for obtaining parallel corpora. When

aligning two versions of a book, results are often affected by unpaired sections – sec-
tions which only exist (or could only be found) in one of the versions of the book.
We developed Text::Perfide::BookSync, a Perl library which performs book syn-
chronization (structural alignment based on section delimitation).
Text::Perfide::PartialAlign is an extension of the partialAlign.py tool bundled

with hunalign which proposes an alternative methods for splitting bitexts.

1 Book synchronization

A common problem which one deals with when aligning literary works is the existence
of unmatched sections : entire sections which exist in one version of the book and do not
have a match in another version.

Text::Perfide::BookSync uses section headings to synchronize books – align them

at section level, helping in the creation of anchor points which can be used to guide the

aligner.

1.1 Extracting section information

Section
boundaries:

Another Perl library, Text::Perfide::BookCleaner, is used to anno-
tate section headings. These annotations are later used to determine
section boundaries.

Short ID: The section type and number are used to create a short ID which will
later be used to compare sections.

Title and initial
words:

These are extracted to provide users with intuitive ways of understanding
the results of the synchronization.

Section size: The number of words of two sections can be used to assess their compat-
ibility in terms of size.

1.2 Synchronization method

The section alignment is performed as follows:

1. A short ID is generated for each section, containing its type and number (if any).

2. Short IDs from all the sections in each book are printed to a file.

3. Files are compared using Unix’s diff command.

4. diff ’s output shows which sections can be paired and which ones are unpaired.

1.3 Ghost sections and chunks
• Often, sections not found in one

version are not actually missing –
they were simply not identified.

• These sections cannot be synchro-
nized because they are invisible to
the synchronizer.

• Solution is to create chunks: a
chunk is a data structure which
includes a pair of matching sec-
tions, and all the following un-
paired sections from both docu-
ments until the next pair of match-
ing sections

• Every matched pair of sections will
be at the beginning of a chunk,
and every unpaired section will be
in a chunk with a matching section
at the top.

• Synchronization is then the align-
ment of chunks based on their first
section.

Function ChunksCalc(pairs, secsL1, secsL2) : chunk∗

Input: pairs: list of matching sections,
secsL1: list of sections from textL1,
secsL2: list of sections from textL2

Output: chunks: list of (section∗, section∗)

begin
c← new Chunk
push(chunks, c)
while secsL1 6= ∅ ∧ secsL2 6= ∅ do

sL1 ← next(secsL1)

while sL1 /∈ pairs do
push(cL1,sL1)

sL1 ← next(secsL1)

sL2 ← next(secsL2)

while sL2 /∈ pairs do
push(cL2,sL2)

sL2 ← next(secsL2)

push(chunks, c)

2 Output objects
2.1 Annotated files

alice EN
<sync id="0">

ALICE’S ADVENTURES IN

WONDERLAND

Lewis Carroll (...)

<sync id="1">

CHAPTER I. Down the

Rabbit-Hole

(...)

<sync id="2">

CHAPTER II. The Pool

of Tears

(...)

alice ES
<sync id="0">

Las Aventuras de Alicia

en el Paı́s de las Mara-

villas, por Lewis Carrol

(...)

<sync id="1">

Capı́tulo 1 - EN LA MADRI-

GUERA DEL CONEJO (...)

<sync id="2">

Capı́tulo 2 - EL CHARCO

DE LAGRIMAS

(...)

2.2 Split files
alice_EN.txt

alice_ES.txt

⇓

alice_EN.txt.c000

alice_ES.txt.c000

alice_EN.txt.c001

alice_ES.txt.c001

alice_EN.txt.c002

alice_ES.txt.c002

(...)

2.3 Synchronization matrix

3 Evaluation

• set of 20 pairs of books
(Portuguese and Spanish versions)

• 3 copies of the set:
Set 1: aligned normally
Set 2: cleaned (with bookcleaner)

and aligned
Set 3: cleaned, synchronized (with

booksync) and aligned
• compare alignment results

Set 1 Set 2 Set 3 ∆%S1,S3

Total aligned 38 40 40 +5.0%

Classified as bad 9 8 3 -66.7%
Percentage bad 23 20 7.5

Not aligned 2 0 0 -100%

Classified as bad: The aligner classifies as
bad any alignment with more than 30%
non-1:1 correspondences.

Not aligned: This happens when the
aligner unexpectedly quits while
processing a bitext (for example,
because it ran out of memory).

4 Partial alignment
hunalign uses an auxiliary Python script, partialAlign.py, to split large bi-

texts in pairs of smaller files before alignment, using terms which occur only once

in each half of a bitext. Text::Perfide::PartialAlign is a Perl library

which implements the same approach and extends it to allow the use of UCTS.

Function T::P::PartialAlign(textL1, textL2, l ucts) : partial doc∗
Input: textL1: text in language L1, textL2: text in

language L2, l ucts: UCTS∗

Output: partial docs: smaller files containing parts
of the input pair.

UCTS: (word∗,word∗)
unique pairs: (word,word)∗

bow = bag of words(textL1, textL2)
forall the word ∈ dom(bow) do

ucts←search(l ucts, word)

if ∃! w1 ∈ uctsL1 : occurs(w1, textL1) = 1
then

if ∃! w2 ∈ uctsL2 : occurs(w2, textL2) = 1
then push(unique pairs, (w1, w2))

chain = extract longest chain(unique pairs)
partial docs = split(textL1, textL2, unique pairs)

UCTS: Unambiguous-
concept translation set.
Words/terms that have a
small amount of ambiguity,
and are expected to be
translated always the same
way.{

wolphram

tungsten

}
en

⇔
{

volfrâmio

tungsténio

}
pt

{
Israel

}
pt
⇔


Израиль
Израилем
Израиля
Израилю


ru

CPAN: Text::Perfide::BookSync, Text::Perfide::PartialAlign, HTML::Auto. Contact information: andrefs@cpan.org, jj@di.uminho.pt, narcarvalho@di.uminho.pt, http://natura.di.uminho.pt.


